O.P.Code: 23CE0114

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech. II Year II Semester Supplementary Examinations December-2025 HYDRAULICS & HYDRAULIC MACHINERY (Civil Engineering)

Tin	1e: 3	Hours	Max.	Mark	s: 70
		PART-A			
	13	(Answer all the Questions $10 \times 2 = 20 \text{ Marks}$)			
1		What is the aim of Reynolds experiment.	CO1	L1	2M
		State Stoke's law.	CO1	L1	2M
		Differentiate uniform flow and non uniform flow.	- CO2	L1	2M
	a	What is open channel flow? Give example.	CO ₂	L1	2M
		Calculate critical depth of a rectangular channel having discharge per unit width is 3cumec/s/m.	CO3	L2	2M
		Enumerate hydraulic jump, height of the jump.	CO ₃	L2	2M
		Define turbine.	CO4	L1	2M
	h	Calculate the force exerted by the jet on a stationary flat plate held normal to the jet having area of 2 sq.m with a velocity of 3 m/s.	CO5	L1	2M
	i٠	Define specific speed of a pump.	CO6	L1	2M
	j	Define multistage centrifugal pump.	CO6	L2	2M
		PART-B			
		(Answer all Five Units $5 \times 10 = 50$ Marks)	100		
2		Derive Navier – Stokes equations of motion.	CO1	L4	10M
		OR	COI	2.	101/1
3	a	List out the characteristics of laminar flow and give examples for laminar flow.	CO1	L1	5M
	b	Oil of absolute viscosity 1.5 poise and density 848.3 kg/m3 flow through	5	£.	
		a 30 cm diameter pipe. If the head loss in 3000 m length of a pipe is 20 m. Assuming laminar flow, determine the velocity, Reynolds number and friction factor	-C01	L2	5M
		UNIT-II			
4	a	Derive the conditions to be most economical trapezoidal channel section	CO2	L2	5M
	D	Design an earthen trapezoidal channel for water having a velocity of 0.6 m/s, side slope of the channel is 1:1.5 and quantity of water flowing is 3	CO2	L3	5M
		cumec. Assume C as 65.			
		OR			
5	a	Define and state the formulae of Energy and momentum Correction factors.	CO2	L2	5M
	b	Define the following terms: Hydraulic radius, Wetted perimeter and	CO ₂	L1	5M
		Slope of the bed,			
		UNIT-III	-		
6	a	In a rectangular channel of width 24 m and depth of flow 6 m, the rate of	CO3	L3	5M
		flow of water is 86.4 m3 /s. If the bed slope of the channel is 1 in 4000,	000		5.72
		find the slope of the free water surface. Take $C = 60$.	19		
	b	Explain back water curve and afflux with a neat sketch. OR	CO3	L2	5M
7	a	Define specific force, specific depth and critical depth.	CO4	L1	5M
		In a rectangular channel of 0.5 m width, a hydraulic jump occurs at a		L4	5M
		point where depth of water flow is 0.15 m and Froude number is 2.5. Determine specific energy, critical and subsequent depths, loss of head and Energy dissipated.	204	5	3141
		O) stockharte.			-

		UNIT-IV			
8	a	List out various design aspects of Pelton Wheel	CO5	L2	5M.
	b	A Pelton wheel is to be designed for the following specifications: Power = 9560 kW, Head = 350 m, Speed = 750 rpm, Overall efficiency = 85%,	CO5	L2	5M
		Jet diameter not to exceed 1/6 th of the wheel diameter. Determine wheel diameter, diameter of the jet and number of jets required. Take coefficient of velocity as 0.985 and speed ratio as 0.45.			
		OR			
9	a	Explain characteristics curves of a turbine with a neat sketch.	CO5	L3	5M
	b	Define cavitation and explain its causes and its effect.	CO ₅	LI	5M
		UNIT-V			
10	a	Explain work done by the centrifugal pump with a neat sketch	CO6	L2	5M
	b	The impeller of a centrifugal pump having external and internal diameters	CO6		5M
1		500 mm and 250 mm respectively, width at outlet 50 mm and running at	-000		5114
		1200 rpm works against a head of 48 m. The velocity of flow through the			
		impeller is constant and equal to 3.0 m/s. The vanes are set back at an			
		angle of 40 degrees at outlet. Determine inlet vane angle, work done by			
		the impeller on water per second and manometric efficiency.			
		OR			
11	a	Derive an expression for minimum starting speed of a centrifugal pump	CO ₆	L2	5M
	b	A centrifugal pump impeller has diameters at inlet and outlet as 360 mm	CO6	L4	5M
		and 720 mm respectively. The flow velocity at outlet is 2.4 m/s and the			
		vanes are set back at an angle of 45 degrees at the outlet. If the		11 147 1	
		manometric efficiency is 70 percent, calculate the minimum starting speed of the pump.			
		*** FND ***			